3.13.70 \(\int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{5/2}} \, dx\) [1270]

Optimal. Leaf size=280 \[ -\frac {i \sqrt {c-i d} \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a-i b)^{5/2} f}+\frac {i \sqrt {c+i d} \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a+i b)^{5/2} f}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right ) f (a+b \tan (e+f x))^{3/2}}-\frac {2 b \left (6 a b c-5 a^2 d+b^2 d\right ) \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right )^2 (b c-a d) f \sqrt {a+b \tan (e+f x)}} \]

[Out]

-I*arctanh((c-I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a-I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2))*(c-I*d)^(1/2)/(a-I*b)^(5
/2)/f+I*arctanh((c+I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a+I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2))*(c+I*d)^(1/2)/(a+I*
b)^(5/2)/f-2/3*b*(-5*a^2*d+6*a*b*c+b^2*d)*(c+d*tan(f*x+e))^(1/2)/(a^2+b^2)^2/(-a*d+b*c)/f/(a+b*tan(f*x+e))^(1/
2)-2/3*b*(c+d*tan(f*x+e))^(1/2)/(a^2+b^2)/f/(a+b*tan(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.81, antiderivative size = 280, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {3649, 3730, 3697, 3696, 95, 214} \begin {gather*} -\frac {2 b \left (-5 a^2 d+6 a b c+b^2 d\right ) \sqrt {c+d \tan (e+f x)}}{3 f \left (a^2+b^2\right )^2 (b c-a d) \sqrt {a+b \tan (e+f x)}}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{3 f \left (a^2+b^2\right ) (a+b \tan (e+f x))^{3/2}}-\frac {i \sqrt {c-i d} \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{f (a-i b)^{5/2}}+\frac {i \sqrt {c+i d} \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{f (a+i b)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*Tan[e + f*x]]/(a + b*Tan[e + f*x])^(5/2),x]

[Out]

((-I)*Sqrt[c - I*d]*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]])]
)/((a - I*b)^(5/2)*f) + (I*Sqrt[c + I*d]*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqrt[
c + d*Tan[e + f*x]])])/((a + I*b)^(5/2)*f) - (2*b*Sqrt[c + d*Tan[e + f*x]])/(3*(a^2 + b^2)*f*(a + b*Tan[e + f*
x])^(3/2)) - (2*b*(6*a*b*c - 5*a^2*d + b^2*d)*Sqrt[c + d*Tan[e + f*x]])/(3*(a^2 + b^2)^2*(b*c - a*d)*f*Sqrt[a
+ b*Tan[e + f*x]])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(a^2
+ b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c*(m + 1) - b*d*n - (b*c - a*d)*
(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
 a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[2*m]

Rule 3696

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3697

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3730

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rubi steps

\begin {align*} \int \frac {\sqrt {c+d \tan (e+f x)}}{(a+b \tan (e+f x))^{5/2}} \, dx &=-\frac {2 b \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right ) f (a+b \tan (e+f x))^{3/2}}-\frac {2 \int \frac {\frac {1}{2} (-3 a c-b d)+\frac {3}{2} (b c-a d) \tan (e+f x)+b d \tan ^2(e+f x)}{(a+b \tan (e+f x))^{3/2} \sqrt {c+d \tan (e+f x)}} \, dx}{3 \left (a^2+b^2\right )}\\ &=-\frac {2 b \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right ) f (a+b \tan (e+f x))^{3/2}}-\frac {2 b \left (6 a b c-5 a^2 d+b^2 d\right ) \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right )^2 (b c-a d) f \sqrt {a+b \tan (e+f x)}}+\frac {4 \int \frac {\frac {3}{4} (b c-a d) \left (a^2 c-b^2 c+2 a b d\right )-\frac {3}{4} (b c-a d) \left (2 a b c-a^2 d+b^2 d\right ) \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx}{3 \left (a^2+b^2\right )^2 (b c-a d)}\\ &=-\frac {2 b \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right ) f (a+b \tan (e+f x))^{3/2}}-\frac {2 b \left (6 a b c-5 a^2 d+b^2 d\right ) \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right )^2 (b c-a d) f \sqrt {a+b \tan (e+f x)}}+\frac {(c-i d) \int \frac {1+i \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx}{2 (a-i b)^2}+\frac {(c+i d) \int \frac {1-i \tan (e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx}{2 (a+i b)^2}\\ &=-\frac {2 b \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right ) f (a+b \tan (e+f x))^{3/2}}-\frac {2 b \left (6 a b c-5 a^2 d+b^2 d\right ) \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right )^2 (b c-a d) f \sqrt {a+b \tan (e+f x)}}+\frac {(c-i d) \text {Subst}\left (\int \frac {1}{(1-i x) \sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\tan (e+f x)\right )}{2 (a-i b)^2 f}+\frac {(c+i d) \text {Subst}\left (\int \frac {1}{(1+i x) \sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\tan (e+f x)\right )}{2 (a+i b)^2 f}\\ &=-\frac {2 b \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right ) f (a+b \tan (e+f x))^{3/2}}-\frac {2 b \left (6 a b c-5 a^2 d+b^2 d\right ) \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right )^2 (b c-a d) f \sqrt {a+b \tan (e+f x)}}+\frac {(c-i d) \text {Subst}\left (\int \frac {1}{i a+b-(i c+d) x^2} \, dx,x,\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}\right )}{(a-i b)^2 f}+\frac {(c+i d) \text {Subst}\left (\int \frac {1}{-i a+b-(-i c+d) x^2} \, dx,x,\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}\right )}{(a+i b)^2 f}\\ &=-\frac {i \sqrt {c-i d} \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a-i b)^{5/2} f}+\frac {i \sqrt {c+i d} \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a+i b)^{5/2} f}-\frac {2 b \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right ) f (a+b \tan (e+f x))^{3/2}}-\frac {2 b \left (6 a b c-5 a^2 d+b^2 d\right ) \sqrt {c+d \tan (e+f x)}}{3 \left (a^2+b^2\right )^2 (b c-a d) f \sqrt {a+b \tan (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 4.86, size = 266, normalized size = 0.95 \begin {gather*} \frac {-\frac {3 i \sqrt {-c+i d} \tanh ^{-1}\left (\frac {\sqrt {-c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {-a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(-a+i b)^{5/2}}+\frac {3 i \sqrt {c+i d} \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{(a+i b)^{5/2}}+\frac {2 b \sqrt {c+d \tan (e+f x)} \left (7 a^2 b c+b^3 c-6 a^3 d+b \left (6 a b c-5 a^2 d+b^2 d\right ) \tan (e+f x)\right )}{\left (a^2+b^2\right )^2 (-b c+a d) (a+b \tan (e+f x))^{3/2}}}{3 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*Tan[e + f*x]]/(a + b*Tan[e + f*x])^(5/2),x]

[Out]

(((-3*I)*Sqrt[-c + I*d]*ArcTanh[(Sqrt[-c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[-a + I*b]*Sqrt[c + d*Tan[e + f
*x]])])/(-a + I*b)^(5/2) + ((3*I)*Sqrt[c + I*d]*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b
]*Sqrt[c + d*Tan[e + f*x]])])/(a + I*b)^(5/2) + (2*b*Sqrt[c + d*Tan[e + f*x]]*(7*a^2*b*c + b^3*c - 6*a^3*d + b
*(6*a*b*c - 5*a^2*d + b^2*d)*Tan[e + f*x]))/((a^2 + b^2)^2*(-(b*c) + a*d)*(a + b*Tan[e + f*x])^(3/2)))/(3*f)

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\sqrt {c +d \tan \left (f x +e \right )}}{\left (a +b \tan \left (f x +e \right )\right )^{\frac {5}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(5/2),x)

[Out]

int((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(5/2),x)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(((2*b*d+2*a*c)^2>0)', see `ass
ume?` for mo

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c + d \tan {\left (e + f x \right )}}}{\left (a + b \tan {\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))**(1/2)/(a+b*tan(f*x+e))**(5/2),x)

[Out]

Integral(sqrt(c + d*tan(e + f*x))/(a + b*tan(e + f*x))**(5/2), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)/(a+b*tan(f*x+e))^(5/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F(-1)]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \text {Hanged} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*tan(e + f*x))^(1/2)/(a + b*tan(e + f*x))^(5/2),x)

[Out]

\text{Hanged}

________________________________________________________________________________________